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Introduction

Artificial intelligence has fundamentally altered how digital
systems interpret language, intent and context. At the centre of
this transformation lies prompting — the craft of
communicating with Al systems so they reliably generate
accurate, relevant and usable outputs. Prompting is no longer a
technical curiosity; it is a practical skill for marketers, creators,
analysts and business owners who must extract value from
generative systems.

This handbook offers a structured, experience-driven approach
to Al prompting. It focuses on practical application rather than
abstract theory: how to design prompts, how to test and refine
them, how to scale prompt-based workflows and how to embed
them responsibly in everyday business processes. Each chapter
contains frameworks, worked examples and ready-to-use
templates so the reader can move from learning to doing
quickly.

Who this book is for

This book is intended for four overlapping audiences: small
business owners and managers who want a do-it-yourself
approach to using Al; early learners and students studying Al or
marketing; practising professionals who need a concise
reference for day-to-day work; and instructors designing short
courses or modules on prompt engineering. Whether you are
implementing an immediate marketing task, preparing course
material, or building repeatable workflows, this handbook is
designed to be directly applicable.

How to use this book

Read it sequentially if you are new to prompting — the early
chapters build foundational concepts. Practitioners and
returning readers can use the templates and example prompts
as a quick reference: each template is annotated with the



intended outcome, common failure modes and suggested tests.
Course instructors will find the worked examples and exercises
suitable for classroom or blended learning. For small business
implementation, use the “DIY” callouts and checklists to deploy
quick experiments and scale the ones that deliver results.

The examples and templates are platform-agnostic where
possible; where they reference specific tools, the focus is on
technique rather than product. As with any skill, progress
comes from iteration: test prompts, measure outputs, and
refine.
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Chapter 4
Tokenization — The True Language of Machines

Before an Al model can interpret a prompt, it must first convert
text into the discrete units it understands: tokens. Humans
think in words, phrases, and sentences. LLMs think in tokens—
subword fragments generated by a mathematical segmentation
process.

Tokenization is the first and one of the most critical steps in the
prompt-model interaction. It determines how meaning is
broken down, how constraints are interpreted, how context
length is measured, and how the model’s internal attention
behaves.

Without understanding tokenization, it is impossible to fully
understand prompting.

4.1 What Is a Token?

A token is the smallest unit of text that a model processes.
Depending on the tokenizer, a token may represent:

¢ awhole word: “umbrella”
e asubword: “un”, “brel”, “la”

” o« ” o«

e asyllable: “com”, “pu”, “ter”

e punctuation: “?”, “—7" «”

e whitespace

e special symbols like <BOS> or <EQS>

Every prompt is converted into a linear sequence of tokens
before the model reads it.

LLMs do not read characters or words—they read token IDs.

This reality fundamentally shapes how prompts are interpreted.



4.2 Why Tokenization Exists
Tokenization evolved because:
1. Natural language contains too many words.

Storing a representation for every distinct word would be
computationally impossible.

2. Text often contains rare or unknown words.

Tokenizing words into smaller units allows the model to handle
new terms.

3. Subwords create efficient representations.

Breaking language into statistically meaningful fragments
captures morphology and semantics.

4. It enables compression.

Tokenization reduces the effective input size, allowing larger
contexts to fit into the model’s window.

Tokenization is a compromise between linguistic
expressiveness and computational efficiency.

4.3 Tokenization Algorithms Used in Modern LLMs
Most LLMs today rely on one of the following systems:
Byte-Pair Encoding (BPE)

Used by GPT series, LLaMA, and many others.
It merges common character pairs repeatedly to form subword
units.

WordPiece

Used by BERT and derivatives.
Creates subwords based on likelihood & frequency.

Unigram Tokenization



Used by models like T5.
Represents the text as an optimal mixture of candidate
subwords.

SentencePiece

Works at byte-level and eliminates dependency on whitespace,
allowing multilingual flexibility.

Byte-Level Tokenization

Used in models like GPT-40 and some newer architectures;
operates directly on raw bytes.

Each tokenizer produces a different segmentation—and
therefore a different internal interpretation—of the same
prompt.

4.4 How Tokenization Affects Prompt Meaning
Tokenization determines:
1. How the model understands structure

The phrase:
“re-evaluate”
may tokenize as:

["re","-" "eval", "uate"]
2. How constraints are interpreted

A JSON structure with improper spacing may tokenize
differently, leading to unexpected formatting behaviour.

3. Prompt length
The context window is measured in tokens, not characters.
4. Semantic precision

A poorly tokenized word may fragment meaning across
subwords, weakening the model’s interpretation.

5. Prompt stability



Different token patterns lead to different internal attention
distributions.

Tokenization is invisible but profoundly influential.

4.5 Word vs. Subword vs. Byte-Level Tokenization
Word-Level Tokenization

Pros: easy to interpret
Cons: impossible to generalize across languages; fails on rare
words

Subword-Level Tokenization

Pros: flexible, compact, multilingual
Cons: may split words in unintuitive ways

Byte-Level Tokenization

Pros: universal, no unknown tokens
Cons: long sequences; harder for humans to reason about

LLMs have converged on subword and byte-level systems due
to their efficiency and expressive power.

4.6 Token Boundaries and Semantic Leakage

Tokens define the “atoms of meaning” inside the model.
Unexpected boundaries can lead to:

o semantic leakage — meaning spreads across tokens
e interpretation drift — LLM misreads intent

o formatting instability — inconsistent JSON or code
blocks

e roledilution — persona instructions lose clarity

Example:
“unbelievable” might tokenize as ["un", "believ", "able"]



If the model misallocates attention to only one segment,
nuance can be lost.

Prompt engineers must be aware of such effects.

4.7 Tokenization and Context Window Limits

All LLMs operate within a fixed context window measured in
tokens:

e Older models: 2k tokens
e Mid-generation models: 8k-32k tokens
e Modern models: 128k-1M tokens
When the token limit is exceeded:
e early tokens may be truncated
e attention may degrade
e instructions may be ignored
e long-context reasoning becomes unstable

Good prompting ensures critical information appears early or is
reinforced at the end—positions where the model’s attention is
strongest.

4.8 Multilingual Tokenization Behaviour
Tokenization varies widely across languages:
e English compresses well into subwords

e Chinese and Japanese may tokenize nearly character-
by-character

e Arabic, Hindi, and agglutinative languages produce
longer sequences

e Mixed-script text (English + emojis + symbols) creates
uneven token density



Prompt engineers should know that multilingual prompts often
use more tokens, reducing effective context length.

4.9 How Tokenization Influences Attention Mechanisms

The attention mechanism operates on tokens—not concepts.
This has several implications:

1. Repetition increases attention weight

Repeating constraints strengthens the model’s focus.
2. Shorter tokens draw less attention individually
Fragmented words may weaken semantic clarity.

3. Structured delimiters create strong segmentation
Markers like

#HitH

<instruction>
form clear attention boundaries.
4. Inconsistent spacing disrupts parsing

Changes token segmentation, which cascades into altered
reasoning.

“«

Tokenization is the model’s “pre-attention filter.”



BYTE-PAIR ENCODING (BPE)

Input Sentence

The quick brown fox jumps
over the lazy dog.

quick W jump over s = lazy

Output: List of Tokens/Subwords

4.10 Prompt Optimization Through Token Awareness

Expert prompt engineers often optimize prompts by controlling
token patterns.

Strategies include:

e Avoiding unnecessary verbosity
Fewer tokens = clearer reasoning path.

e Placing critical instructions early
Early tokens receive strong attention.

e Using consistent delimiters
Tokens signal structural boundaries.

e Avoiding characters that tokenize poorly
e.g., certain symbols fragment excessively.

e Using semantically rich phrases
Dense meaning reduces token count while increasing
clarity.



Every improvement in token design improves model
performance.

4.11 Special Tokens and Their Significance
Models use special tokens to structure internal processing:
e <BOS> — beginning of sequence
e <EOS>— end of sequence
e <PAD>— padding
e <UNK> — unknown token
e <SEP> — separator
e <CLS> — classification marker

These tokens play roles in system prompting, conversation
management, and multi-input reasoning.

For example, ChatGPT uses hidden control tokens to distinguish
between system, assistant, and user messages.

Understanding special tokens allows for advanced prompting
techniques such as meta-prompting or system-level instruction
design.

4.12 Tokenization Errors and Their Effects
Sometimes tokenization causes problems:

e Unexpected splitting

e Loss of semantic cohesion

o Formatting corruption

e Overlong prompts

« Failure to follow instructions



Case example:
A JSON dictionary with inconsistent spacing can tokenize
unpredictably, leading the model to output malformed JSON.

This is why structured prompting relies on highly controlled
token patterns.

4.13 The Humanity-Token Divide

Humans think in meaning.
LLMs think in tokens.

This divide explains:
e why small prompt changes cause big output differences
e why LLMs struggle with ambiguity
e why explicit structure outperforms creative phrasing
e why repetition reinforces behaviour
e why token length affects reasoning quality

Prompt engineering is about bridging the gap between human
semantics and machine tokenization.

4.14 Preparing for the Next Chapter

Understanding tokens sets the stage for
understanding embeddings, the numerical vectors that encode
these tokens in high-dimensional space.

Where tokenization defines the boundaries of meaning,
embeddings define the geometry of meaning.

Chapter 5 explores how meaning is represented inside the
model—knowledge essential for designing prompts that align
with the model's internal semantics.



